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What the robot needs to do 7




0 Motivation
— The pre-training and post-training of our human beings

L

“Pre-training” under supervision of parents “Self-supervised finetuning”

Improve generalization ability ?

> We finetune ourself for a lot of objectives, such as ...

acceleration precision Robustness & safety



0 Motivation

— Learn from demonstration, but also limited by the dataset
Diffusion Policy

Visuomotor Policy Learning via Action Diffusion

Uonauuo> dns

i 7 atentvectors )
T = { i
oft . A : : Voxel Decoder
s “"'
s 1 i PerceiverlO Transformer
H Language Encoder Voxel Encoder
=3 = open the middle drawer

=

m: A Vision-Language-Action Flow Model for
General Robot Control
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Robot Action Data

[ oot Action In-the-wild Mobile Robot

Object Detection ) 7| o-the-witd statio Robot

T Deploy out-of-the-box in new homes —
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Multinodal Web Data In-Lab Static Robot

General Robot Data
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Robot walks its pet dog

Handover & Fold Shorts

Pour water to specified level

Unseen Objects & Scenes

What can we do if the era of “GPT-2" in robotics really comes ?

v" Imitation Learning

Simple and efficient

@ Drawbacks:

Expert demonstration
Poor generalization ability

v' Offline RL

Learn from Suboptimal data
Better generalization ability

®

“Stich”



0 Motivation

— Supervised Learning is great, but also limited by the dataset

O How this paradigm work for
robotic?
v' Imitation learning
v' Offline reinforcement learning
v" Offline to online RL finetuning

Successes of this paradigm in research areas of CV and NLP



O What we did toward this goal

Zifeng Zhuang*, Kun Lei*, Jinxin Liu, Donglin Wang, Yilang Guo.
International Conference on Learning Representations (ICLR), 2023
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2. Uni-0O4: Unifying Online and Offline Deep Reinforcement
Learning with Multi-Step On-Policy Optimization

Kun Lei, Zhengmao He*, Chenhao Lu*, Kaizhe Hu,

Yang Gao, Huazhe Xu.

International Conference on Learning Representations (ICLR), 2024

3. RL-100: Performant Robotic Manipulation with Real-World
Reinforcement Learning

Kun Lei*, Huanyu Li*, Dongjie Yu*, Zhenyu Wei*, Lingxiao Guo,
Zhennan Jiang, Ziyu Wang, Shiyu Liang, Huazhe Xu.

Preparing to submit.
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training of robot (foundation) model

Offline-to-online finetuning

- for fast adaptation Finetuning from multi-
- with safety consideration modal perception

- for task acceleration




Behavior proximal policy optimization

Zifeng Zhuang*, Kun Lei*, Jinxin Liu, Donglin Wang, Yilang Guo
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O Behavior proximal policy optimization (BPPO)

O Online RL O Offline RL

v' Exploration is crucial @ Exploration is limited

P m— — ——
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deployment

O Conservative methods

Online off policy Online on policy An offline version of PPO

SAC

# Conservatism 3= BC 2= Nothing Key insight:

The first work paid attention to the policy
HIEEA-HE learning instead of the value learning in offline

setting

Offline



0 Method

» Stage 1: Supervised Learning Behavior cloning  mm) Behavior policy 7g

\ Regression (Sarsa style) —> Qnﬁ\

Regression (Monte Carlo return) ) Vz, —
» Stage 2: Policy improvement using PPO

Offline dataset Advantage

O Offline monotonic improvement over behavior policy

» For two policies  and 7', the Performance Difference J,(7r’, m) can be measured by the advantage

function:
H
Online: JA (7‘_/3 7'(') - ETNPWI(T) [Z AI'(tAﬂ(Sta at)] - ,(L~7r’(-|s) [A,,,—(S, (l)]
t=0
Offline: Ia (m,75) =1 |As,(s,0)
Ja (7 7p) = Bazpphn(ls) [Ans (5,0)] N
From TRPO «_, I Only in offline

m ) [S] and DTV (D”ﬁ'ﬁ) [S] = é (1 — /15 ((1t|5t) we can

Theorem 2. Given the distance |Dpy (7
derive the following bound.:

JIa (m,75) > Ja (7, 75) — 4yAz, -max Dry (|75) [s]- E | [Dry (7||7s) [s]]

s«-pﬁd(-

— 27As, -max Dry (7|7g) [s] - E | [1— 75 (als)],

s~pp(-

Proposition 1. For offline dataset D = {(st, Aty Spr1.T )fV: 1} and policy 7 g, the total variational
. divergence can be expressed as Dry (D||7g) [s¢] = 5 (1 — 7 (ai]s)).

A== Qnﬁ‘Vnﬁ



0 BPPO - Method

» Stage 1: Supervised Learning Behavior cloning  mmp Behavior policy 7

s: Regression (Sarsa style) ) O B~
: Advantage A== Q;,-V,
Offline dataset Regression (Monte Carlo return) mmmp V, 8 — " "BTE

» Stage 2: Policy improvement using PPO

Ly (1) = Esmpp(-),ammi(-]s) [min ( ™ (a]s) Ay, (s,a)lclip ( ™ (a]s) 1 —2¢,1+ 26) A,rk(s,a)>]

7k (als) 7k (als)

PPO objective with advantage replacement: A_(s,a) = Q5 g~ |2 8



O RL partitioning

v" Data interaction patterns

» On-policy RL
» off-policy RL
» Offline RL



» A general version of RL policy update forms

Policy evaluation

Qk+1 = arg mcgn Es,a)~w [(

Policy improvement

k+1

m' " = arg max Esnp, amr [Qk+1(8, a)}

» One-step RL

High return region

€o

2

* One-step RL/IQL/IDQL...

— Q(s,a))z].

N Q, eoo 1

T+7E’|sa a'~mk(-|s) [Q( )]

_5]E5NP[DKL(7TH7Tref)}- oo 2

» Multi-step RL > lterative RL

12
y !
12.'2 .

« BPPO—> Uni-O4/RL-100... « PPO/SACI/...

1

More conservative, but stable

Aggressive exploration, but occasionally crash



Environments & Main Results

Gym locomotion

Kitchen

Antmaze
7

Iterative methods

Onestep methods |

Suite Environment | CQL TD3+BC I Ones(ep RL IQL I BC (Ours) (BPPO (OUN) N
halfcheetah-medium-v2 44.0 48.3 484 474 43.510.1 44.010.2
hopper-medium-v2 58.5 59.3 59.6 66.3 61.343.2 93.943.9
walker2d-medium-v2 72.5 83.7 81.8 78.3 74.21+4.6 83.6:0.9
halfcheetah-medium-replay-v2 45.5 44.6 38.1 44.2 40.11+0.1 41.01+0.6
hopper-medium-replay-v2 95.0 60.9 97.5 94.7 66.0418.3 92.5+34

Gym  walker2d-medium-replay-v2 77.2 81.8 49.5 73.9 334+11.2 77.6+7.8
halfcheetah-medium-expert-v2 91.6 90.7 934 86.7 64.448.5 92.5+1.9
hopper-medium-expert-v2 105.4 98.0 103.3 91.5 64.947.7 112.84+1.7
walker2d-medium-expert-v2 108.8 110.1 113.0 109.6 107.7+£3.5 113.1+24
Gym locomotion-v2 total 698.5 677.4 684.6 692.4 | 555.5+57.2 751.0+21.8
pen-human-v1 375 8.4* 90.7* TS 61.64+9.7 117.8+11.9
hammer-human-v1 44 2.0* 0.2* 1.4 2.04+0.9 14.9+3.2
door-human-v1 9.9 0.5* -0.1* 43 7.8+3.5 259475
relocate-human-v1 0.2 -0.3* 2.1* 0.1 0.1£0.0 4.8+2.2

Adroit  Pen-cloned-vl 39.2 41.5* 60.0 373 58.84+16.0 110.8:+6.3
hammer-cloned-v1 2:1 0.8* 2.0 2.1 0.540.2 8.9+5.1
door-cloned-v1 04 -0.4% 0.4 1.6 0.91+0.8 6.21+1.6
relocate-cloned-v1 -0.1 -0.3%* -0.1 -0.2 -0.140.0 1.9+1.0
adroit-vi total 93.6 522 155.2 118.1 131.6+31.1 291.4+38.8
kitchen-complete-v0 43.8 0.0* 2.0* 62.5 55.0£11.5 91.5+8.9
kitchen-partial-v0 498 22.5% 35.5% 46.3 44.0+4.9 57.0+24

Kitchen  kitchen-mixed-v0 51.0 25.0* 28.0* 51.0 45.0%1.6 62.51+6.7
kitchen-vO total 144.6 47.5 65.5 159.8 | 144.0%18.0 211.0+18.0
locomotion+kitchen+adroit | 936.7 . || 905.3 970.3 | 831.1+106.3 g1253.4 +78.6 y,

w509 performance
based on BC



O How BPPO avoid overestimating:

» Once policy evaluation
» CLIP function in PPO loss

O Issues in BPPO

» The needs of online policy evaluation
» The performance is highly related to the estimated behavior policy
» Just offline

-

Uni-0O4




raining of robot (foundation) model

Offline-to-online
finetuning

- for fast adaptation

- with safety consideration
- for task acceleration

Finetuning from muilti-
modal perception




Uni-O4: Unifying Online and Offline Deep Reinforcement
Learning with Multi-Step On-Policy Optimization

Kun Lei' Zhengmao He'* Chenhao Lu? Kaizhe Hu'? Yang Gao'?® Huazhe Xu123

1 Shanghai Qi Zhi Institute. 2 Tsinghua University, IlIS. 3 Shanghai Al Lab.
4 The Hong Kong University of Science and Technology (Guangzhou).

Tsinghua
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O Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step
On-Policy Optimization

Offline-to-online issues: distribution shift due to the conservatism used in offline phase.

MoJoCo Locomotion Medium Tasks
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N "o initi 20
Crash” in the initial  “%, 50 100 150 200 0 50 100 150
offline2online stage Environment Steps (x5e3) Environment Steps (x5e3)
(a) Normalized Return (b) Average value

Can we avoid introducing the conservatism term during offline training and eliminate the need On-policy:
for off-policy evaluation during offline-to-online fine-tuning? Uni-O4 [1]

[1] Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization. Kun Lei, Zhengmao He, Chenhao Lu Kaizhe Hu' Yang Gao Huazhe Xu. ICLR 2024



O Offline-to-online framework

Supervised Learning Offline Multi-Step Optimization

® High-return action Low-return action _53'
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0 Simulated Results

» Offline phase, offline-to-online phase, real robot
setting
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» Offline phase, offline-to-online phase, real robot setting

Online Phase (Sim)

2x speed

j -
> E e
i

Train quadruped robot
For several minutes collection

Data

(D

fllla
~



Offline fine-tuning Phase (Real-world) Online Phase (Real-world)

|
|
|
|
@ Supervised Learning :
— - 5
~— T ek _
: T4, T[k+2
_ Offline Multi-Step Optimization i
|
- : VT _>V1Tk+1 Tg+1
Update
[

Performance Improved on But still not satisfactory Faster and more robust
soft & deformable terrain when speed is fast



Online Phase (Sim) Offline Phase (Real-world) Online Phase (Real-
world)

All in one with PPO!



O Offline and online fine-tuning comparison O Offline-to-online baseline

Sim2Re_a"lTFi»’5‘l;§1
- "’I‘i/ Al

b -

NCorm S

Uni-O4 vs. IQL [1] Uni-0O4 vs. Walk these ways [2]

[1] Kostrikov I, Nair A, Levine S. Offline reinforcement learning with implicit g-learning[J]. arXiv preprint arXiv:2110.06169, 2021.
[2] Margolis, Gabriel B., and Pulkit Agrawal. "Walk these ways: Tuning robot control for generalization with multiplicity of behavior." Conference on Robot Learning. PMLR, 2023.



Key insight of Uni-O4:
* On-policy RL can unify offline and online setting

e Offline RL could work as a finetuning paradigm

Only explored locomotion tasks.



raining of robot (foundation) model

Offline-to-online finetuning
- for fast adaptation

- with safety consideration
- for task acceleration

Finetuning from
multi-modal perception




RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning

Kun Lei*, Huanyu Li*, Dongjie Yu*, Zhenyu Wei*, Lingxiao Guo, Zhennan Jiang, Ziyu Wang,
Shiyu Liang, Huazhe Xu.

Preparing to submit.

Tsinghua
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https://arxiv.org/abs/2510.14830

What we did’



» 7 real robot tasks, 900/900 successes. Up to 250 consecutive trials in one task,
running 2 hours nonstop without failure.
» High success rate against physical disturbances, zero-shot, and few-shot adaptation




What we did?

® Folding ® Dynamic Push-T ® Pour » Bowling

® Dual-arm ® Rigid-body dynamics > agile
® Deformable

=z T

i | s L &
- ’ e\ "
1
s N i 1A e
- 3 \‘\w

| \ \ . ,

® Juicing-stage 1 ® Juicing-stage 2 ® Unscrewing ® Serve for 7 hours
® Diff. Size ® Deformable ® Dynamic ® /ero-shot
® Various inclination ® (Confined-space

B Key Words: » 250/250 » 2 Hours » Efficient » 7 hours outdoor serving



How to do it



Training Pipeline
Post-Training — lterative Offline Post-Training - Online

DATASET

gowe®

ACﬁOn

State

Training Objective
Policy Training Loss: { }

0" POLICY - Perception & Decision ) )
DDIM POLICY - Single Action
Skip-Net
RL-100 Robot
Encoder State

DDIM POLICY - Chunk Action

/ Visual Feature U-Net

Self-Supervised Loss




Training Pipeline

Post-Training - lterative Offline

I| x N Times
ENV-ROBOT

Rollout

DATASET

gowe®

ACﬁOn

State

Once Teleop
Training Objective

0o POLICY - Perception & Decision

RL-100
Encoder

/ Visual Feature

Self-Supervised Loss

ROBOT

Offline Module -
\Supervised Training

M,

Policy Training Loss: { }

Robot
State

Update: Transition & Value Nets

T:dg( | ,a)

Qo( 1, a)&Vy(- 1)

Post-Training - Online

RL-100 Finetune Loss

DDIM POLICY - Single Action
Skip-Net

DDIM POLICY - Chunk Action
U-Net

--o-c---o-c---------'.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-



Training Pipeline

Post-Training - lterative Offline ' Post-Training - Online
|
ROBOT 'l
I
00 Offline Module - ‘|
Supervised Training B (]
Rollout il
: R ' ENv-ROBOT
l %1 .l - ~
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! 8 |
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| |
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Training Objective

= POLICY — Perception & Decision | OlcY Training Loss:{  } , _
DDIM POLICY - Single Action

Skip-Net
Robot

S DDIM POLICY — Chunk Action

/ Visual Feature U-Net

Self-Supervised Loss




Training Pipeline

Post-Training - lterative Offline ' Post-Training - Online
‘|
ROBOT "
l.
00 Offline Module - 1
Supervised Training I (]
S "
Rollout RL-100 |
Encoder I

' ENv-ROBOT

. DATASET Update: Transition & Value Nets B Ve ( | )
| 4 ‘|
. rew?" ) .
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. Action l'
| °l
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| °l
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Training Objective
. - Policy Training Loss: { }
"o POLICY - Perception & Decision DDIM POLICY — Single Action Distill - Online / Batch Online
Skip-Net .
RL-100 Robot Distill CM POLICY - Chunk / Single
Encoder e DDIM POLICY — Chunk Action Loss U-Net/ Skip-Net =
/ Visual Feature U-Net

Self-Supervised Loss One-Step & High Freq Control



O Two-level MDP with DDIM sampling with stochastic form

— Reverse diffusion process: denoising

\
\--"

[-’()x! llxt)
@H —@— O H

_ Forward diffusion process: add noise

Policy gradient (PG) loss: Vo] = E[Vg logpg(als) R;]

PG loss with multi step sampling (DDIM):  VgJ = En[z Vo logpg(x;,_, | %z, 5) Ryl

Po (ka—l |ka' S)

PG loss with multi step sampling and importance sampling: VyJ = E”[Z Vy lo
pQOld(ka—llek'S)

One-step consistency distillation:  Lcp(0) = Egg e [||Co(wT,T) —sg|¥, (27, 7—0)] ||§]

Overall finetune loss: Liotal = LrL + Acp - Lcp

ATL’] B

=

offline

A, = GAE
- online

-V



Autonomous 1X Speed

* Robustness, Zero-Shot
& Few-shot
Generalization

Agile Bowling



O Execution efficiency

A B
oo DP-2d RL-100 (DDIM) 16 1o DP-2d RL-100 (DDIM)
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O Data usage

Task Human Demonstration Iterative Offline RL Online RL
# of epi.  Collection time (h) # of epi. Collection time (h) # of epi.  Collection time (h)
Dynamic Push-T 100 2 821 8 763 7.5
Agile Bowling 100 2 249 2 213 2.5
Pouring 64 1 741 6.8 129 1.5
Soft-towel Folding 400 5 896 11 654 8.5
Dynamic Unscrew 31 0.5 467 4.5 288 3
Orange Juicing — Placing 80 1.5 642 10.5 750 12.5
Orange Juicing — Removal 29 0.5 149 2.5 240 4

Average 115 1.8 566 6.5 434 5.6




O Ablation study

ReconVIB vs. No ReconVIB vs. Fix Encoder
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Takeaway:

1)

2)

3)

4)

5)

Variance clipping is valid for stable
exploration - variance clipping in the
stochastic DDIM sampling process.
Epsilon prediction is more suitable
for RL: large noise schedule for
exploration

Reconstruction is crucial for visual
robotic manipulation RL as it
mitigates representational drift and
improves sample efficiency.

On a relatively clean scene, the 3D
variant learns faster and attains a
higher final success rate.

CM effectively compresses the
iterative denoising process without
sacrificing control quality, enabling
high-frequency deployment.
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O Next move - Liberate productive forces: robot helps

O O O
Single task Multi task: Understand
The same series humans' instructions

More data-more
robots
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