

From Human, Go Beyond: The Robotic Era

Shanghai Qizhi Institute & Shanghai Jiao Tong University

Kun Lei

13.01.2026

What the robot needs to do ?

- Reliability
- Efficiency
- Robustness

□ Motivation

– The pre-training and post-training of our human beings

“Pre-training” under supervision of parents

“Self-supervised finetuning”

Improve **generalization** ability ?

➤ We finetune ourself for a lot of objectives, such as ...

acceleration

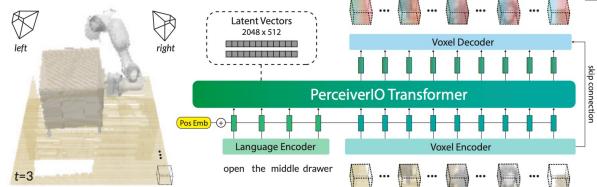
precision

Robustness & safety

□ Motivation

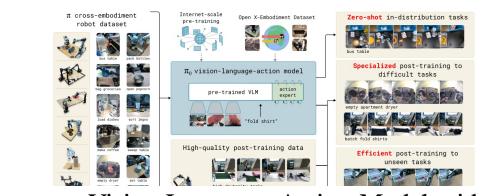
- Learn from demonstration, but also limited by the dataset

PerACT



π_0 : A Vision-Language-Action Flow Model for General Robot Control

Physical Intelligence
Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Eguí, Chelsea Finn, Nicolo Fusi, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jastrzabek, Tim Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohit Modak, Suraj Nair, Karl Petersch, Lucy Xianyang Shi, James Tanner, Quan Vieng, Anna Walling, Haohan Wang, Ury Zhilinsky
<https://physicalintelligence.com/company/blog/pi0/>



$\pi_{0.5}$: a Vision-Language-Action Model with Open-World Generalization

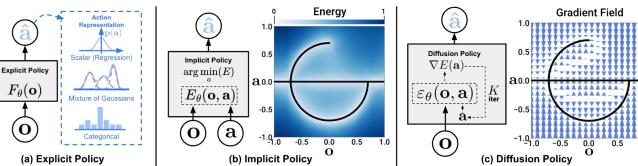
Physical Intelligence
Kevin Black, Noah Brown, James Dauphin, Karan Dabhi, Danny Driess, Adnan Esmail, Michael Eguí, Chelsea Finn, Nicolo Fusi, Manuel V. Galík, Dibya Ghosh, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jastrzabek, Tim Jones, Liyiming Ke, Devin Leflame, Sergey Levine, Adrian Li-Bell, Mohit Modak, Suraj Nair, Karl Petersch, Allen Z. Ren, Lucy Xianyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner, Quan Vieng, Homer Walk, Anna Walling, Haohan Wang, Lili Yu, Ury Zhilinsky
<https://pi05 website>

π_0

$\pi_{0.5}$

Diffusion Policy

Visuomotor Policy Learning via Action Diffusion



✓ Imitation Learning

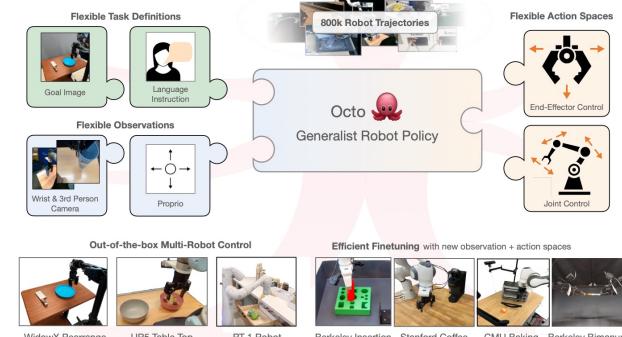
- Simple and efficient

😭 Drawbacks:

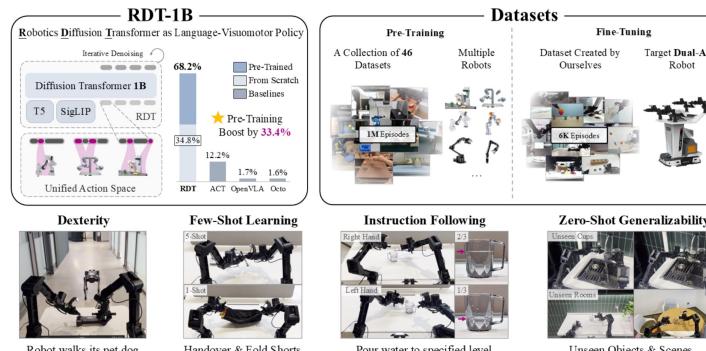
- Expert demonstration
- Poor generalization ability

✓ Offline RL

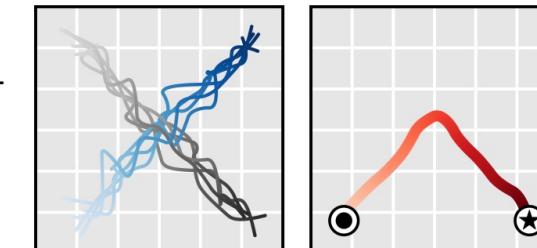
- Learn from Suboptimal data
- Better generalization ability



Octo



RDT

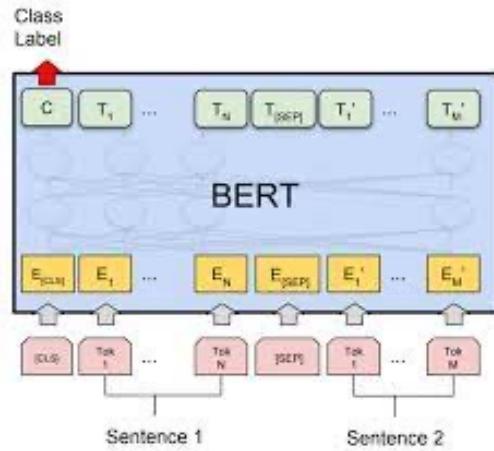


“Stich”

What can we do if the era of “GPT-2” in robotics really comes ?

□ Motivation

- Supervised Learning is great, but also limited by the dataset

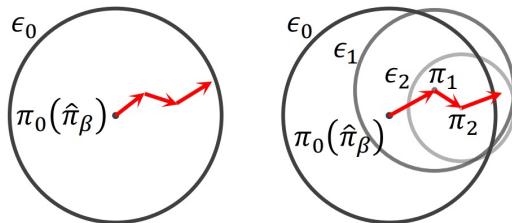


- How this paradigm work for robotic?

- ✓ Imitation learning
- ✓ Offline reinforcement learning
- ✓ Offline to online RL finetuning

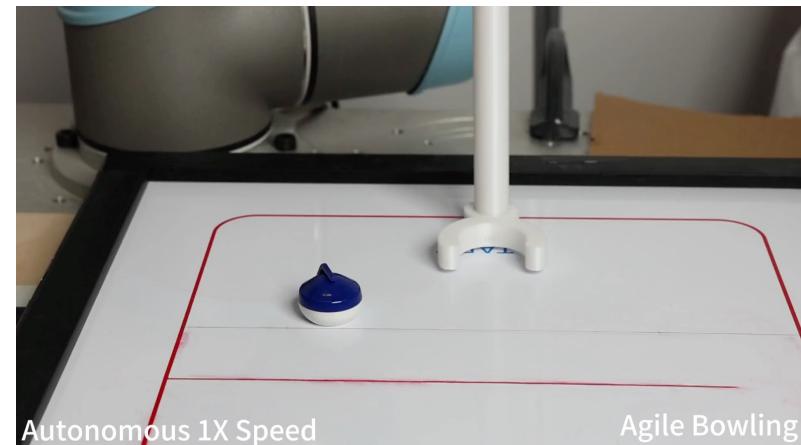
Successes of this paradigm in research areas of CV and NLP

□ What we did toward this goal



1. Behavior proximal policy optimization

Zifeng Zhuang*, Kun Lei*, Jinxin Liu, Donglin Wang, Yilang Guo.
International Conference on Learning Representations ([ICLR](#)), 2023



2. Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization

Kun Lei, Zhengmao He*, Chenhao Lu*, Kaizhe Hu,
Yang Gao, Huazhe Xu.

International Conference on Learning Representations ([ICLR](#)), 2024

3. RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning

Kun Lei*, Huanyu Li*, Dongjie Yu*, Zhenyu Wei*, Lingxiao Guo,
Zhennan Jiang, Ziyu Wang, Shiyu Liang, Huazhe Xu.
Preparing to submit.

The post-training of robot (foundation) model

Offline reinforcement learning -Pretraining/Finetuning

Offline-to-online finetuning

- for fast adaptation
- with safety consideration
- for task acceleration

Finetuning from multi-modal perception

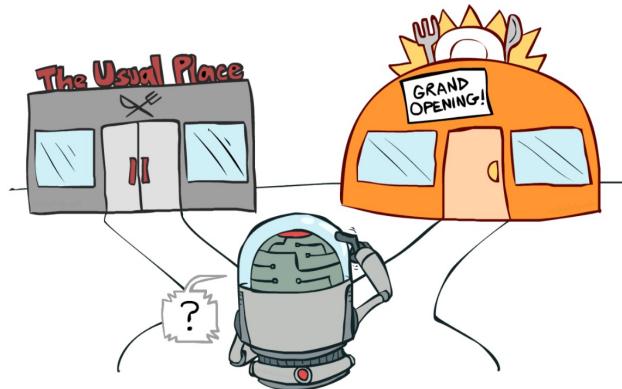
Behavior proximal policy optimization

Zifeng Zhuang*, **Kun Lei***, Jinxin Liu, Donglin Wang, Yilang Guo

❑ Behavior proximal policy optimization (BPPO)

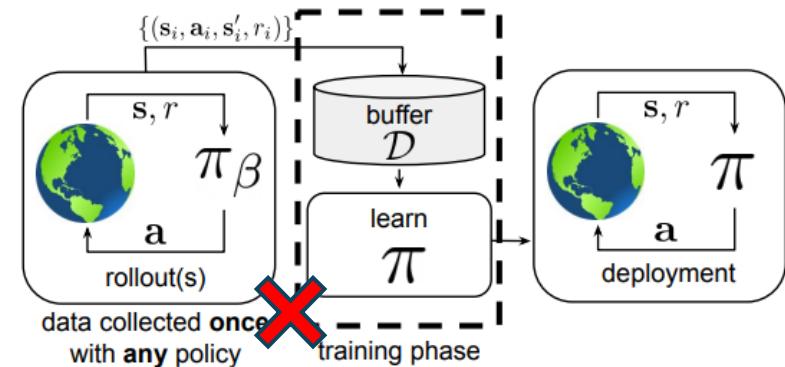
❑ Online RL

- ✓ Exploration is crucial



❑ Offline RL

- 😭 Exploration is limited



❑ Conservative methods

Online off policy

SAC

TD3

+ Conservatism

+ BC

Online on policy

PPO

+ Nothing

Offline
CQL

TD3+BC

BPPO

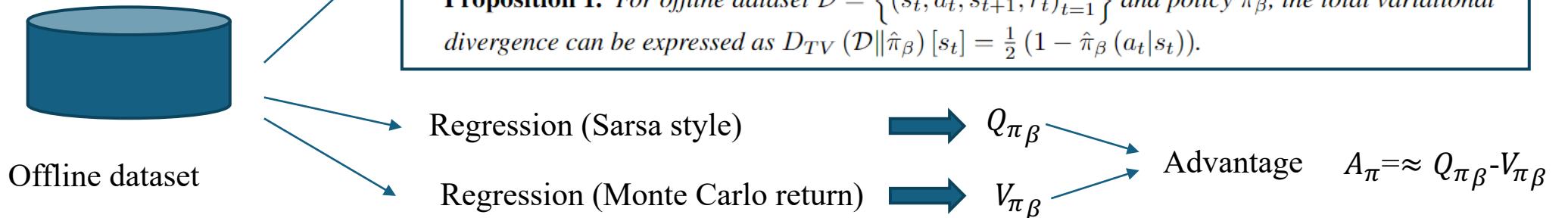
“An offline version of PPO”

Key insight:

The first work paid attention to **the policy learning** instead of the **value learning** in offline setting

Method

Stage 1: Supervised Learning



Stage 2: Policy improvement using PPO

Offline monotonic improvement over behavior policy

- For two policies π and π' , the **Performance Difference** $J_\Delta(\pi', \pi)$ can be measured by the advantage function:

$$\text{Online: } J_\Delta(\pi', \pi) = \mathbb{E}_{\tau \sim P_{\pi'}(\tau)} \left[\sum_{t=0}^H \gamma^t A_\pi(s_t, a_t) \right] = \mathbb{E}_{s \sim \rho_{\pi'}(\cdot), a \sim \pi'(\cdot | s)} [A_\pi(s, a)]$$

$$\text{Offline: } \hat{J}_\Delta(\pi, \hat{\pi}_\beta) = \mathbb{E}_{s \sim \rho_{\mathcal{D}}(\cdot), a \sim \pi(\cdot | s)} [A_{\hat{\pi}_\beta}(s, a)]$$

Theorem 2. Given the distance $D_{TV}(\pi \parallel \hat{\pi}_\beta)[s]$ and $D_{TV}(\mathcal{D} \parallel \hat{\pi}_\beta)[s] = \frac{1}{2} (1 - \hat{\pi}_\beta(a_t | s_t))$, we can derive the following bound:

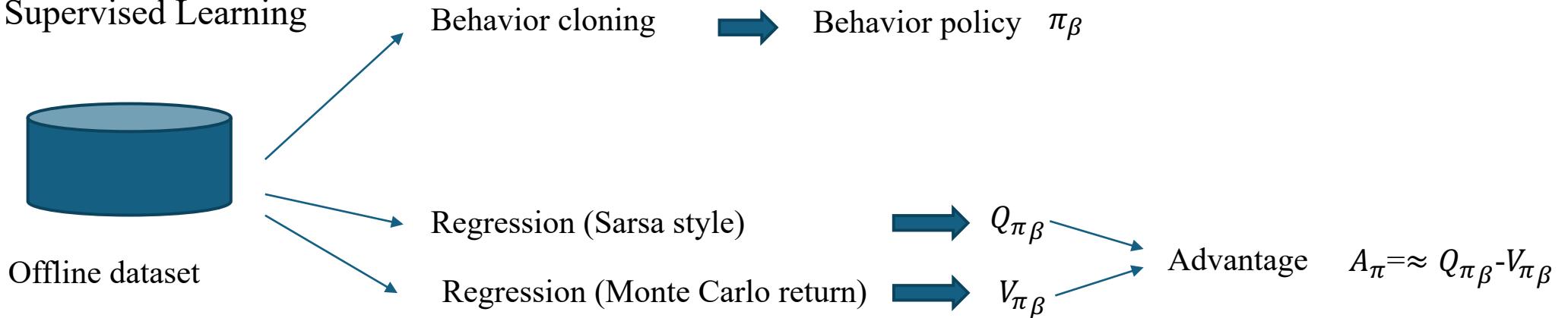
$$\begin{aligned} J_\Delta(\pi, \hat{\pi}_\beta) &\geq \hat{J}_\Delta(\pi, \hat{\pi}_\beta) - 4\gamma \mathbb{A}_{\hat{\pi}_\beta} \cdot \max_s D_{TV}(\pi \parallel \hat{\pi}_\beta)[s] \cdot \mathbb{E}_{s \sim \rho_{\hat{\pi}_\beta}(\cdot)} [D_{TV}(\pi \parallel \hat{\pi}_\beta)[s]] \\ &\quad - 2\gamma \mathbb{A}_{\hat{\pi}_\beta} \cdot \max_s D_{TV}(\pi \parallel \hat{\pi}_\beta)[s] \cdot \mathbb{E}_{s \sim \rho_{\mathcal{D}}(\cdot)} [1 - \hat{\pi}_\beta(a | s)], \end{aligned}$$

From TRPO

Only in offline

□ BPPO - Method

- Stage 1: Supervised Learning



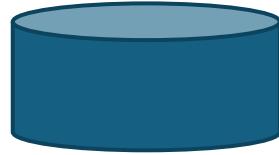
- Stage 2: Policy improvement using PPO

$$L_k(\pi) = \mathbb{E}_{s \sim \rho_{\mathcal{D}}(\cdot), a \sim \pi_k(\cdot|s)} \left[\min \left(\frac{\pi(a|s)}{\pi_k(a|s)} A_{\pi_k}(s, a), \text{clip} \left(\frac{\pi(a|s)}{\pi_k(a|s)}, 1 - 2\epsilon, 1 + 2\epsilon \right) A_{\pi_k}(s, a) \right) \right]$$

PPO objective with advantage replacement: $A_\pi(s, a) \approx Q_{\hat{\pi}_\beta} - V_{\hat{\pi}_\beta}$

❑ RL partitioning

✓ Data interaction patterns



- On-policy RL
- off-policy RL
- Offline RL

➤ A general version of RL policy update forms

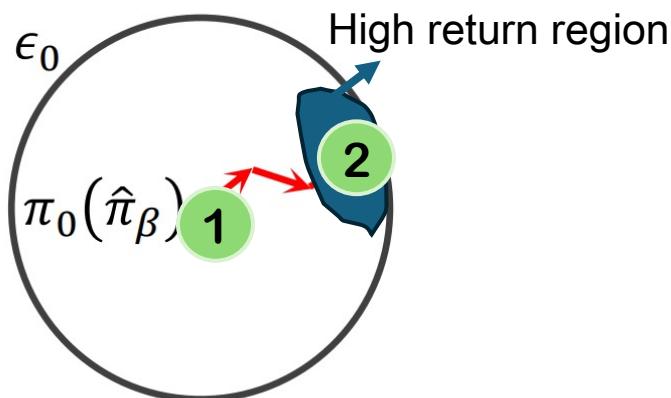
Policy evaluation

$$\hat{Q}^{k+1} = \arg \min_Q \mathbb{E}_{(s,a) \sim w} \left[\left(\underbrace{T^{\pi^k} \hat{Q}}_{r + \gamma \mathbb{E}_{s'|s,a} \mathbb{E}_{a' \sim \pi^k(\cdot|s')} [\hat{Q}(s',a')]} - Q(s,a) \right)^2 \right]. \dots \quad 1$$

Policy improvement

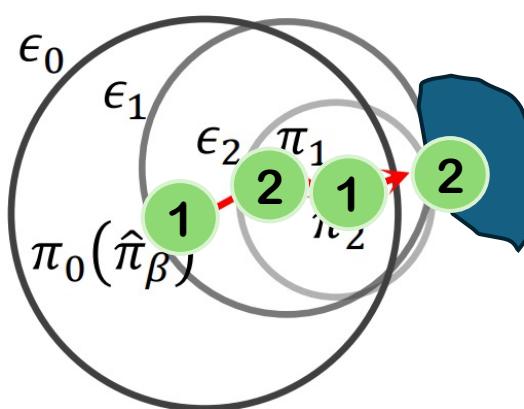
$$\pi^{k+1} = \arg \max_{\pi} \mathbb{E}_{s \sim \rho, a \sim \pi} [\hat{Q}^{k+1}(s, a)] - \beta \mathbb{E}_{s \sim \rho} [D_{\text{KL}}(\pi \parallel \pi_{\text{ref}})]. \dots \quad 2$$

➤ One-step RL



- One-step RL/IQL/IDQL...

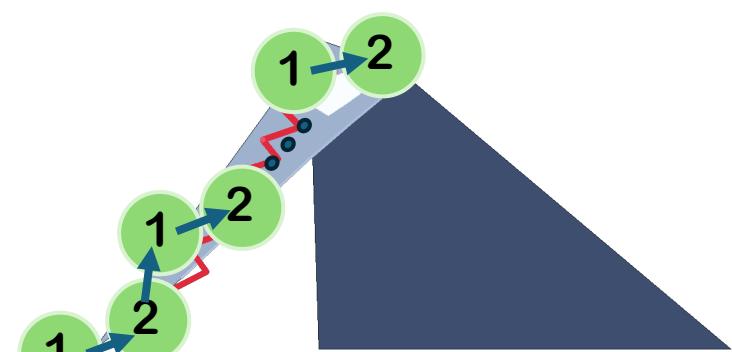
➤ Multi-step RL



- BPPO → Uni-O4/RL-100...

More conservative, but stable

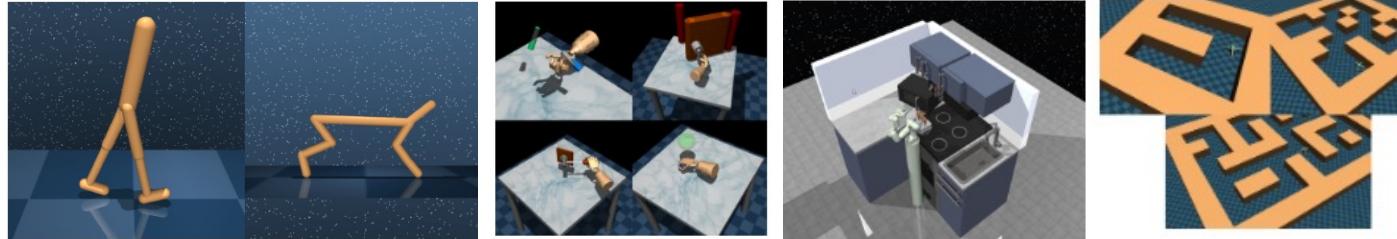
➤ Iterative RL



- PPO/SAC/...

Aggressive exploration, but occasionally crash

Environments & Main Results



Gym locomotion

Adroit

Kitchen

Antmaze

Suite	Environment	Iterative methods		Onestep methods		BC (Ours)	BPPO (Ours)
		CQL	TD3+BC	Onestep RL	IQL		
Gym	halfcheetah-medium-v2	44.0	48.3	48.4	47.4	43.5±0.1	44.0±0.2
	hopper-medium-v2	58.5	59.3	59.6	66.3	61.3±3.2	93.9±3.9
	walker2d-medium-v2	72.5	83.7	81.8	78.3	74.2±4.6	83.6±0.9
	halfcheetah-medium-replay-v2	45.5	44.6	38.1	44.2	40.1±0.1	41.0±0.6
	hopper-medium-replay-v2	95.0	60.9	97.5	94.7	66.0±18.3	92.5±3.4
	walker2d-medium-replay-v2	77.2	81.8	49.5	73.9	33.4±11.2	77.6±7.8
	halfcheetah-medium-expert-v2	91.6	90.7	93.4	86.7	64.4±8.5	92.5±1.9
	hopper-medium-expert-v2	105.4	98.0	103.3	91.5	64.9±7.7	112.8±1.7
	walker2d-medium-expert-v2	108.8	110.1	113.0	109.6	107.7±3.5	113.1±2.4
	<i>Gym locomotion-v2 total</i>	698.5	677.4	684.6	692.4	555.5±57.2	751.0±21.8
Adroit	pen-human-v1	37.5	8.4*	90.7*	71.5	61.6±9.7	117.8±11.9
	hammer-human-v1	4.4	2.0*	0.2*	1.4	2.0±0.9	14.9±3.2
	door-human-v1	9.9	0.5*	-0.1*	4.3	7.8±3.5	25.9±7.5
	relocate-human-v1	0.2	-0.3*	2.1*	0.1	0.1±0.0	4.8±2.2
	pen-cloned-v1	39.2	41.5*	60.0	37.3	58.8±16.0	110.8±6.3
	hammer-cloned-v1	2.1	0.8*	2.0	2.1	0.5±0.2	8.9±5.1
	door-cloned-v1	0.4	-0.4*	0.4	1.6	0.9±0.8	6.2±1.6
	relocate-cloned-v1	-0.1	-0.3*	-0.1	-0.2	-0.1±0.0	1.9±1.0
	<i>adroit-v1 total</i>	93.6	52.2	155.2	118.1	131.6±31.1	291.4±38.8
Kitchen	kitchen-complete-v0	43.8	0.0*	2.0*	62.5	55.0±11.5	91.5±8.9
	kitchen-partial-v0	49.8	22.5*	35.5*	46.3	44.0±4.9	57.0±2.4
	kitchen-mixed-v0	51.0	25.0*	28.0*	51.0	45.0±1.6	62.5±6.7
	<i>kitchen-v0 total</i>	144.6	47.5	65.5	159.8	144.0±18.0	211.0±18.0
	<i>locomotion+kitchen+adroit</i>	936.7	777.1	905.3	970.3	831.1±106.3	1253.4±78.6

↑ 50% performance
based on BC

- ❑ How BPPO avoid overestimating:

- Once policy evaluation
- CLIP function in PPO loss

- ❑ Issues in BPPO

- The needs of online policy evaluation
- The performance is highly related to the estimated behavior policy
- Just offline

Uni-04

The post-training of robot (foundation) model

Offline reinforcement learning
-Pretraining/Finetuning

Offline-to-online finetuning
- for fast adaptation
- with safety consideration
- for task acceleration

Finetuning from multi-modal perception

Uni-O4: Unifying **Online** and **Offline** Deep Reinforcement Learning with Multi-Step **On-Policy** Optimization

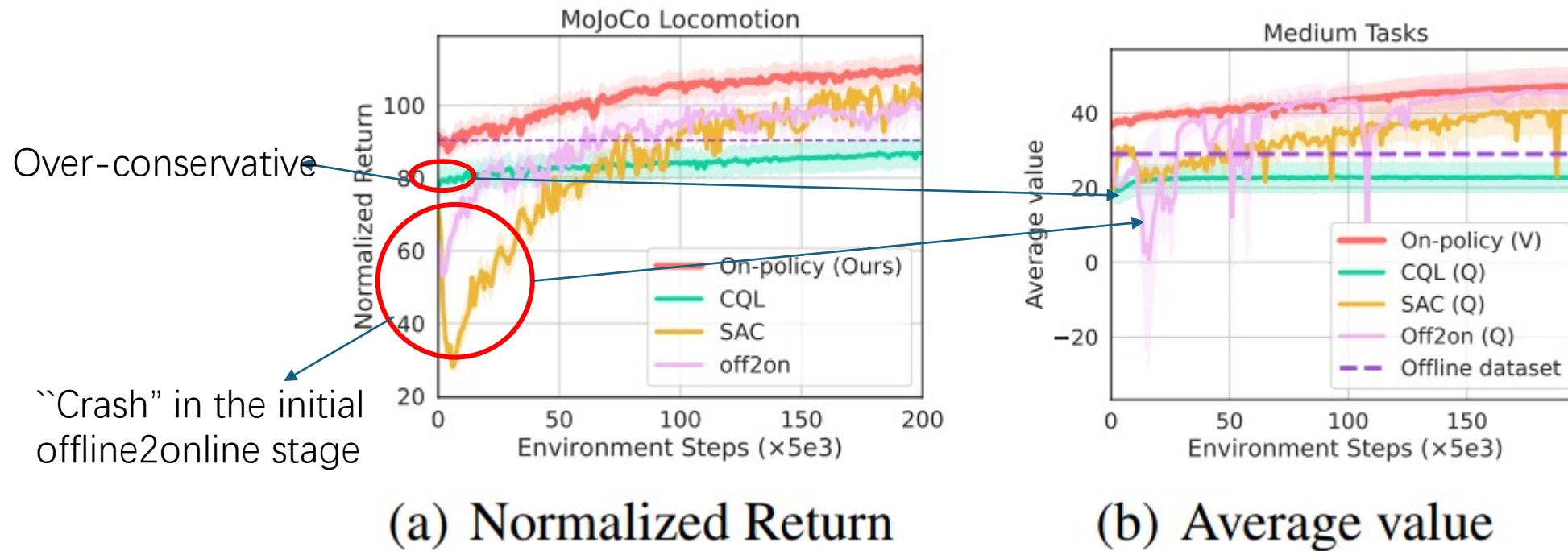
Kun Lei¹ Zhengmao He¹⁴ Chenhao Lu² Kaizhe Hu¹² Yang Gao¹²³ Huazhe Xu¹²³

1 Shanghai Qi Zhi Institute. 2 Tsinghua University, IIIS. 3 Shanghai AI Lab.

4 The Hong Kong University of Science and Technology (Guangzhou).

Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization

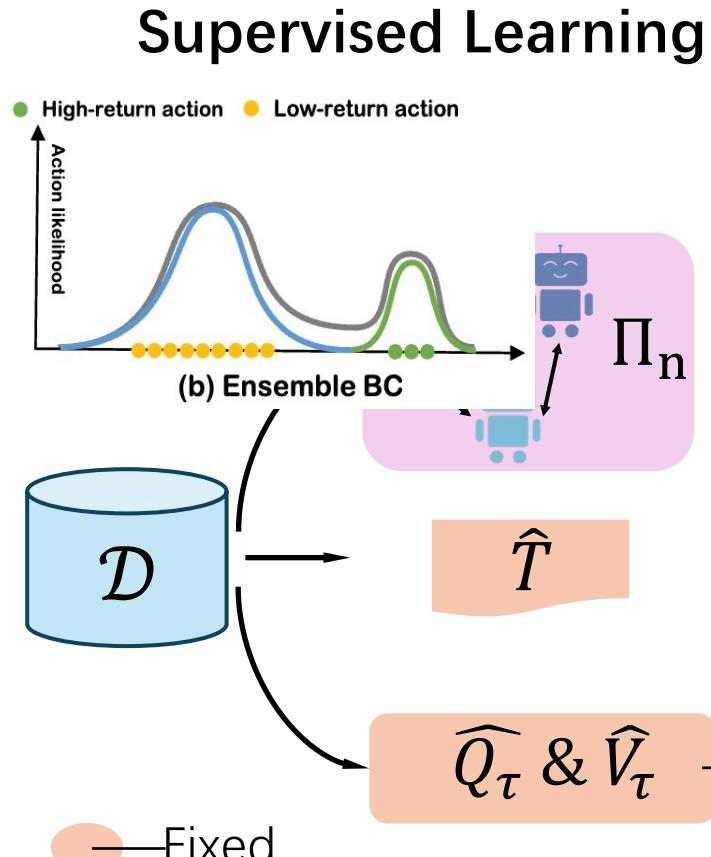
Offline-to-online issues: *distribution shift* due to the *conservatism* used in offline phase.



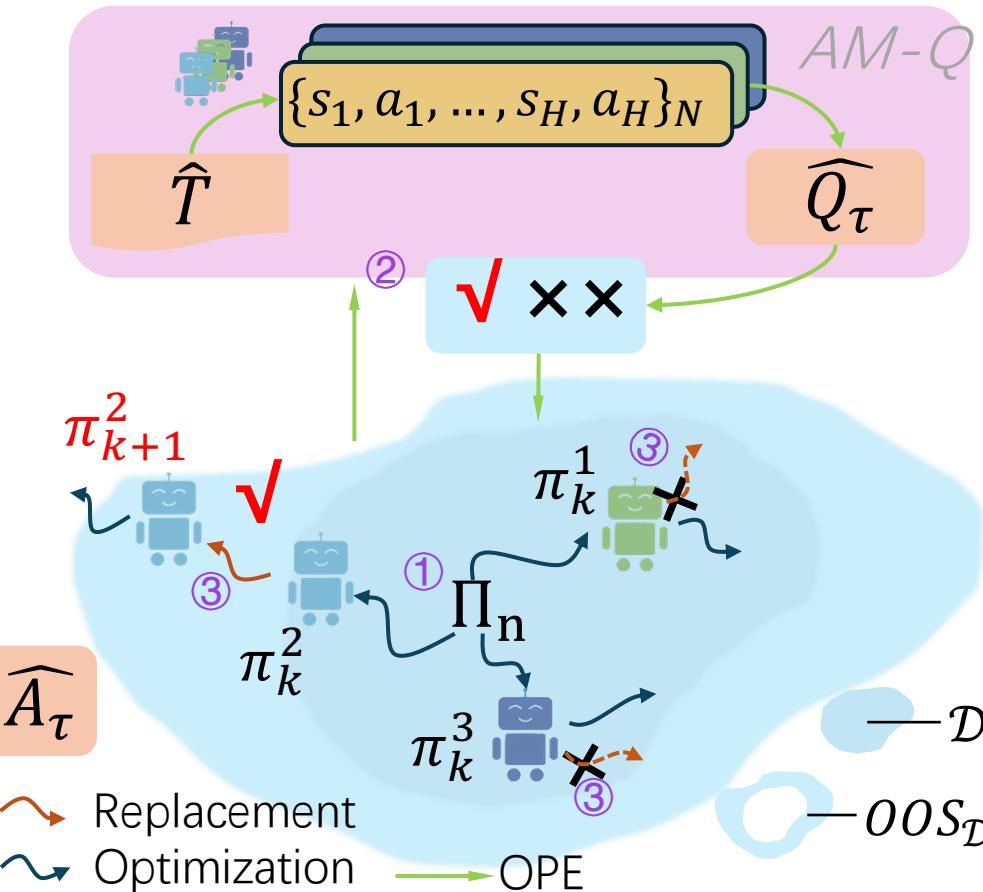
Can we avoid introducing the **conservatism** term during offline training and **eliminate the need for off-policy evaluation** during offline-to-online fine-tuning?

On-policy:
Uni-O4 [1]

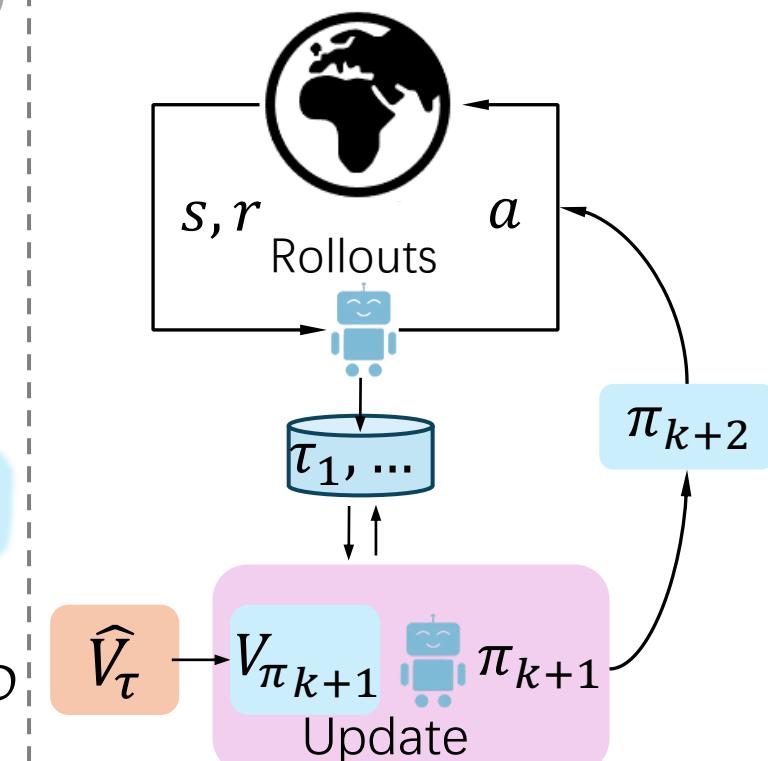
□ Offline-to-online framework



Offline Multi-Step Optimization

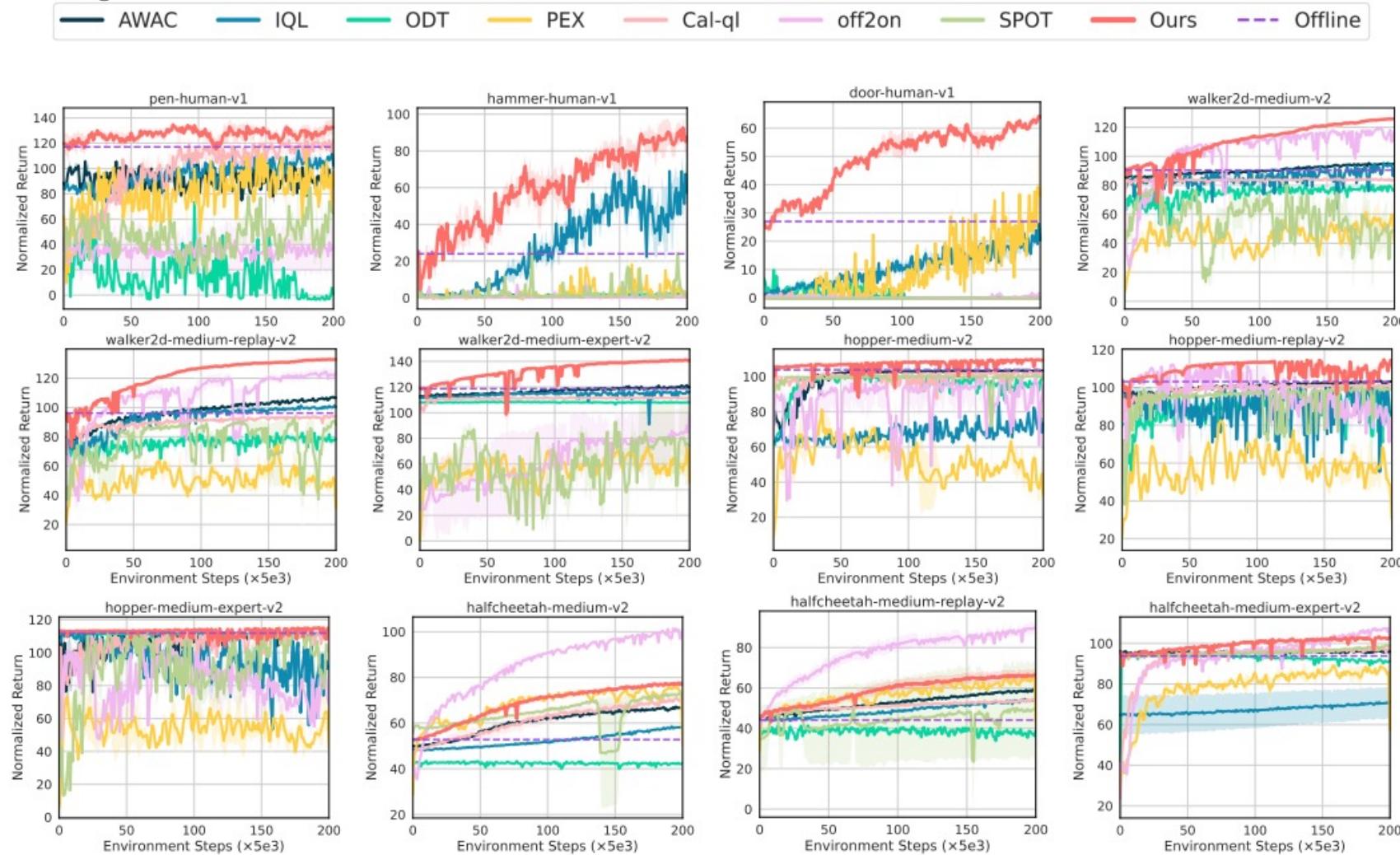


Online Fine-Tuning

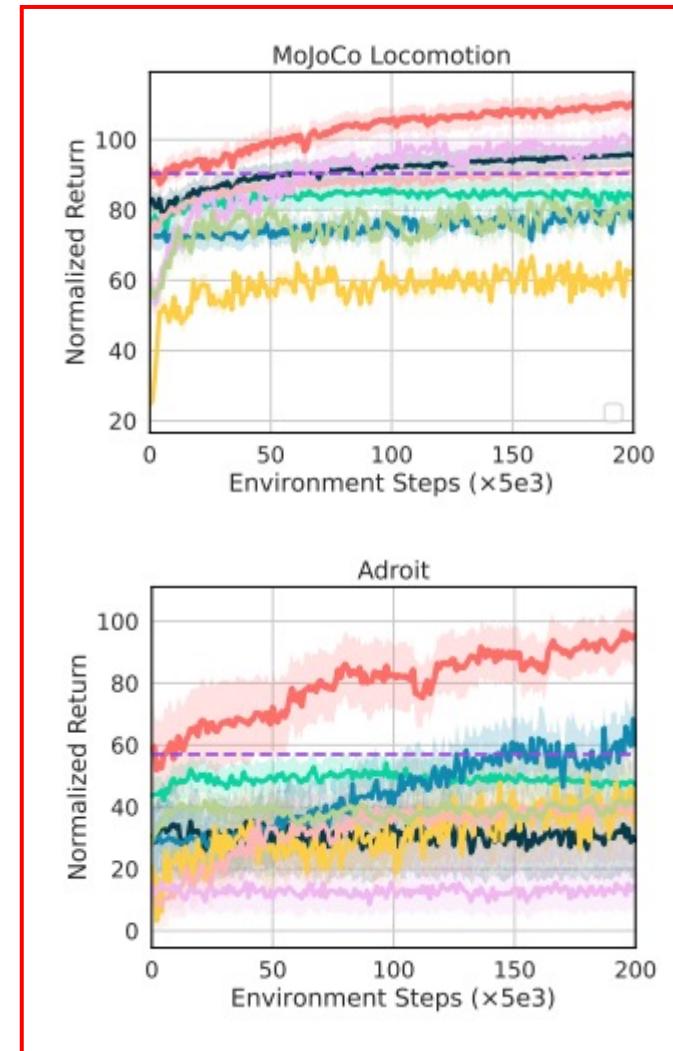


□ Simulated Results

- Offline phase, offline-to-online phase, real robot setting



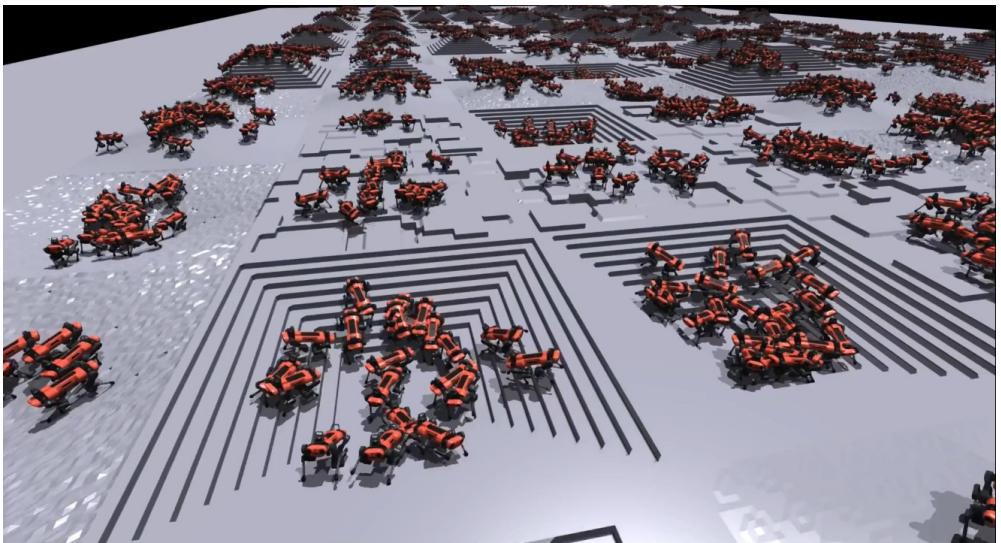
Results over single task



Average results over domains

- Offline phase, offline-to-online phase, real robot setting

Online Phase (Sim)

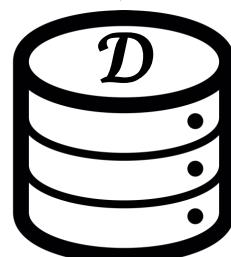


Deploy in
Real-World

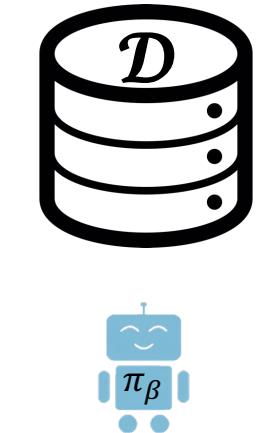
Train quadruped robot
For several minutes

$\tau_1,$
 $\tau_2,$
...

Data
collection



Offline fine-tuning Phase (Real-world)



Supervised Learning

$$\hat{T}$$

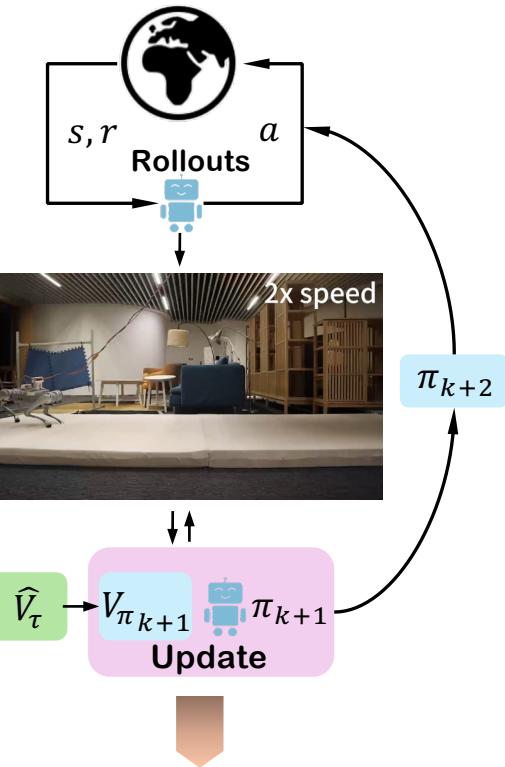
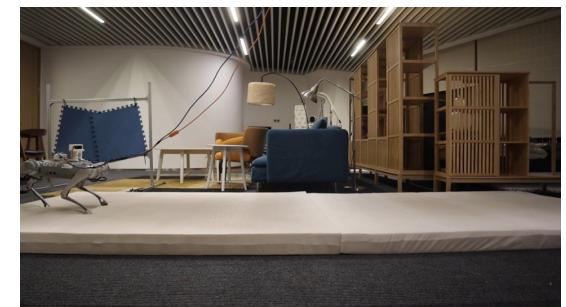
$$\hat{Q}_\tau \text{ & } \hat{V}_\tau$$

Offline Multi-Step Optimization

Performance Improved on
soft & deformable terrain

But still **not satisfactory**
when speed is **fast**

Online Phase (Real-world)



Faster and more robust

Online Phase (Sim)

Offline Phase (Real-world)

Online Phase (Real-world)

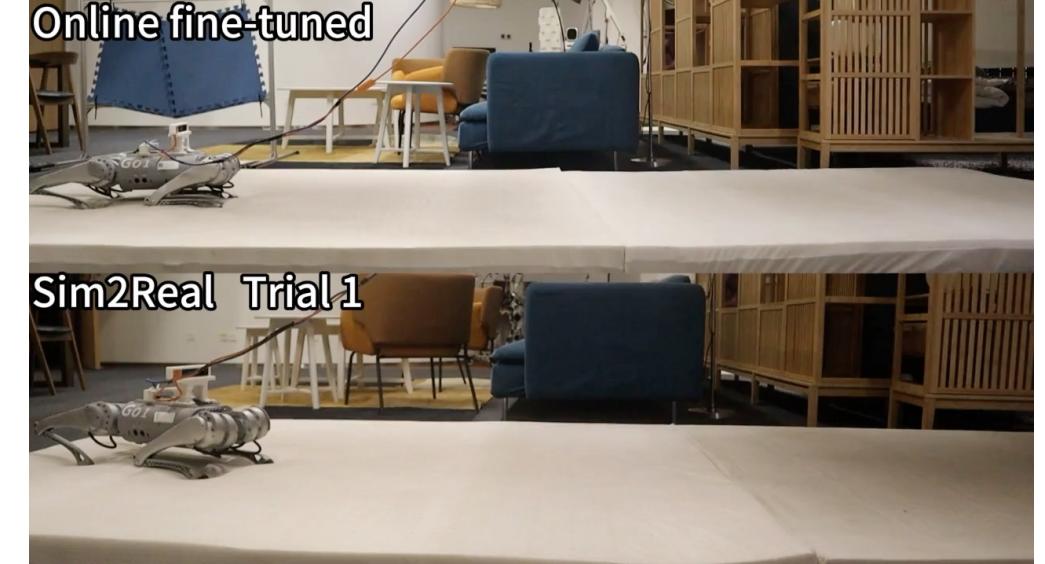
All in one with PPO!

❑ Offline and online fine-tuning comparison



Uni-O4 vs. IQL [1]

❑ Offline-to-online baseline



Uni-O4 vs. Walk these ways [2]

[1] Kostrikov I, Nair A, Levine S. Offline reinforcement learning with implicit q-learning[J]. arXiv preprint arXiv:2110.06169, 2021.

[2] Margolis, Gabriel B., and Pulkit Agrawal. "Walk these ways: Tuning robot control for generalization with multiplicity of behavior." *Conference on Robot Learning*. PMLR, 2023.

Key insight of Uni-O4:

- On-policy RL can unify offline and online setting
- Offline RL could work as a finetuning paradigm

Only explored locomotion tasks.

The post-training of robot (foundation) model

Offline reinforcement learning
-Pretraining/Finetuning

Offline-to-online finetuning
- for fast adaptation
- with safety consideration
- for task acceleration

**Finetuning from
multi-modal perception**

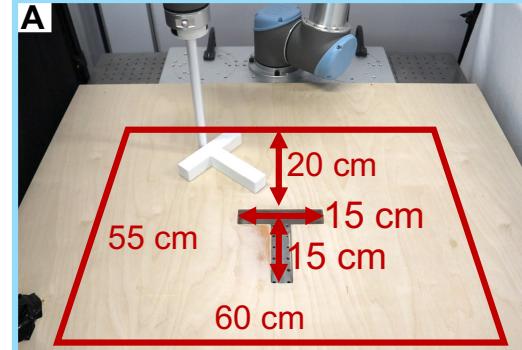
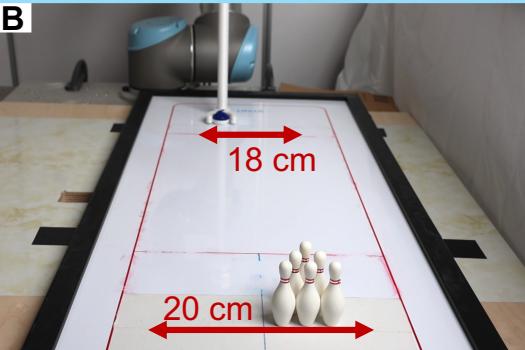
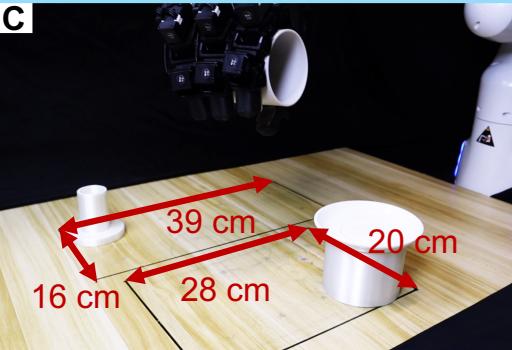
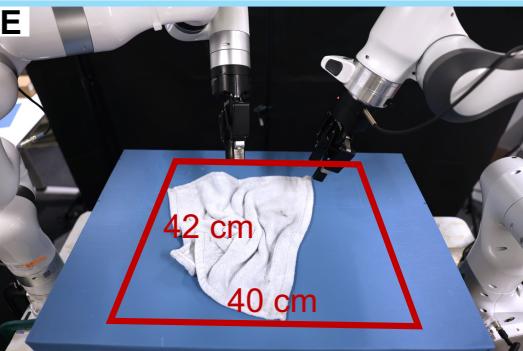
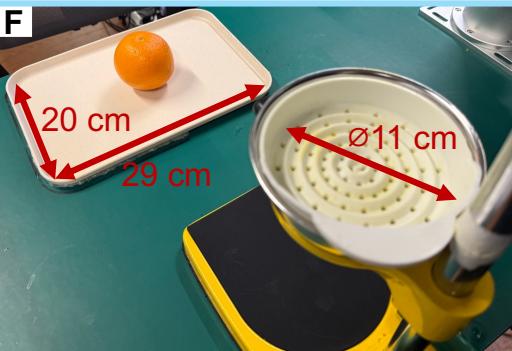
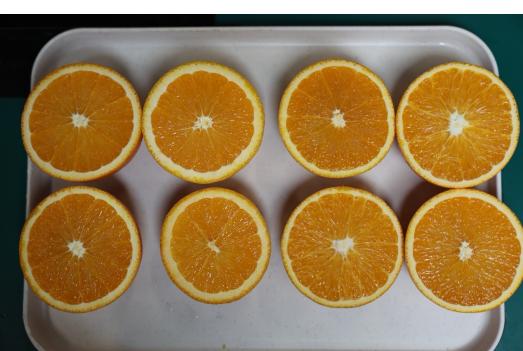
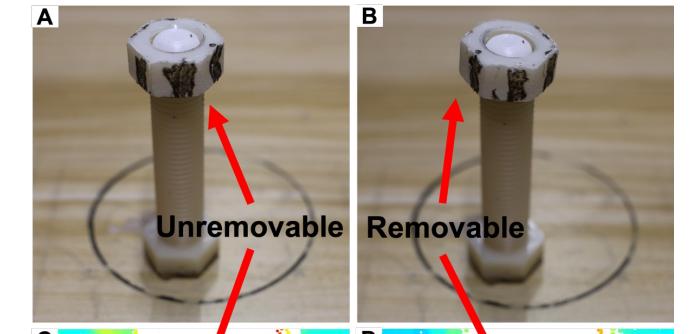
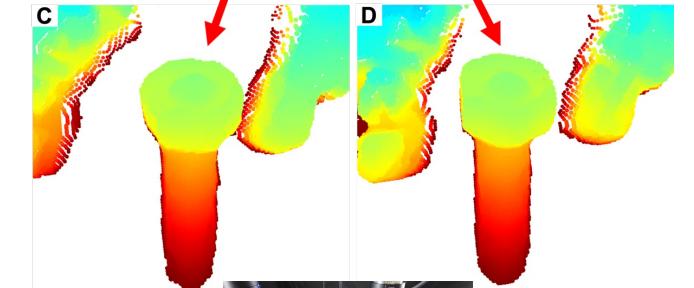
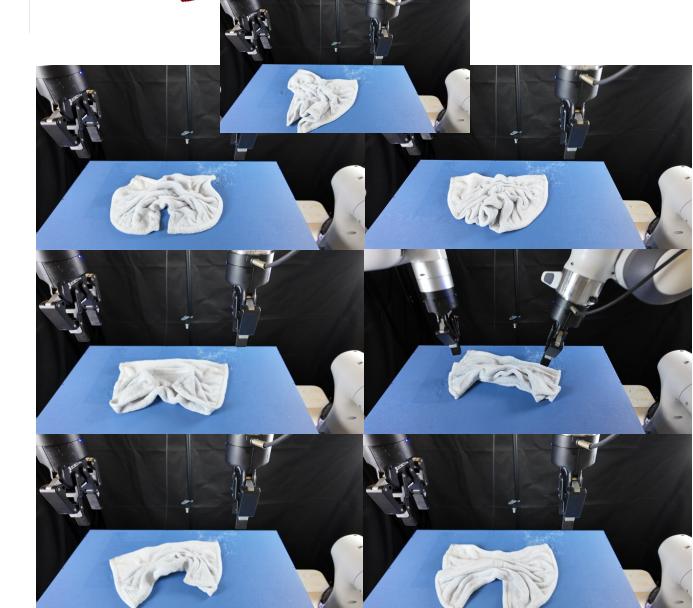
RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning

Kun Lei*, Huanyu Li*, Dongjie Yu*, Zhenyu Wei*, Lingxiao Guo, Zhennan Jiang, Ziyu Wang, Shiyu Liang, Huazhe Xu.

Preparing to submit.

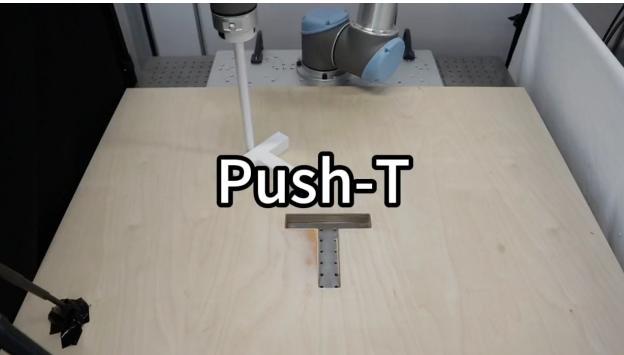
What we did?

- 7 real robot tasks, **900/900** successes. Up to **250** consecutive trials in one task, running **2 hours** nonstop without failure.
- High success rate against physical disturbances, zero-shot, and few-shot adaptation



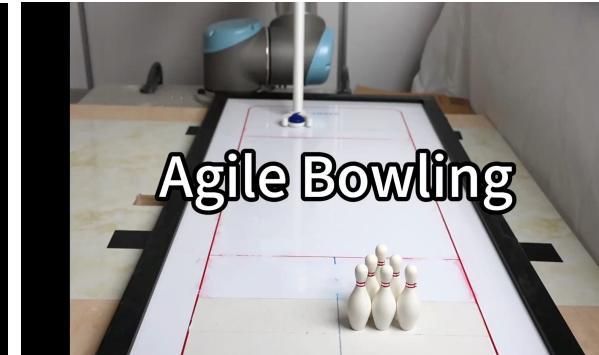
What we did?

- Folding
 - Dual-arm
 - Deformable



- Dynamic Push-T
 - Rigid-body dynamics

- Pour
 - Fluids / granular



- Bowling
 - agile

- Juicing-stage 1
 - Diff. Size
 - Various inclination

- Juicing-stage 2
 - Deformable
 - Confined-space

- Unscrewing
 - Dynamic

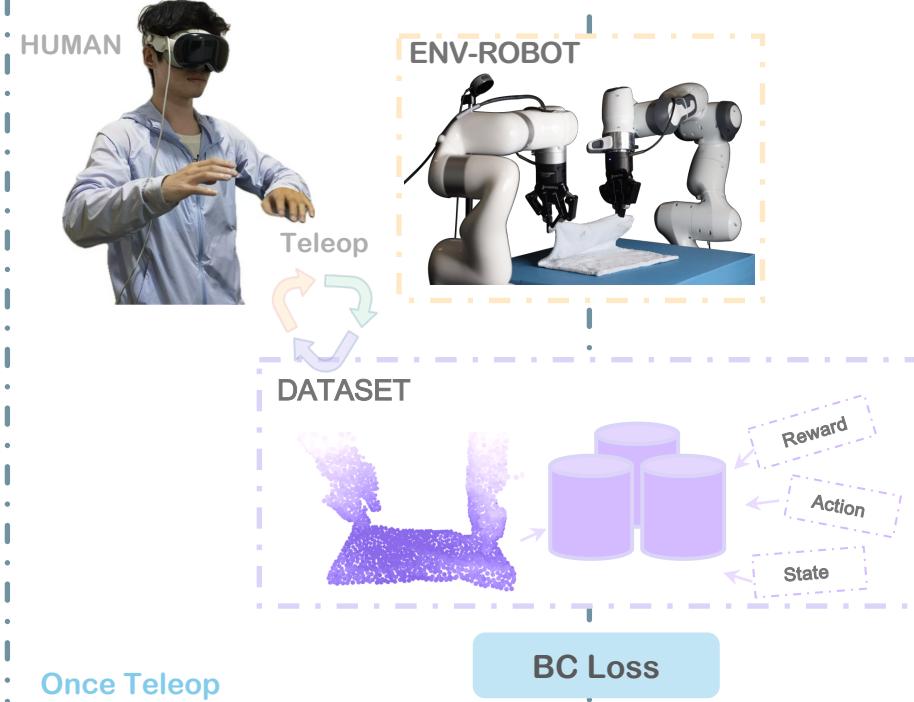
- Serve for 7 hours
 - Zero-shot

■ Key Words: ➤ 250/250 ➤ 2 Hours ➤ Efficient ➤ 7 hours outdoor serving

How to do it

Training Pipeline

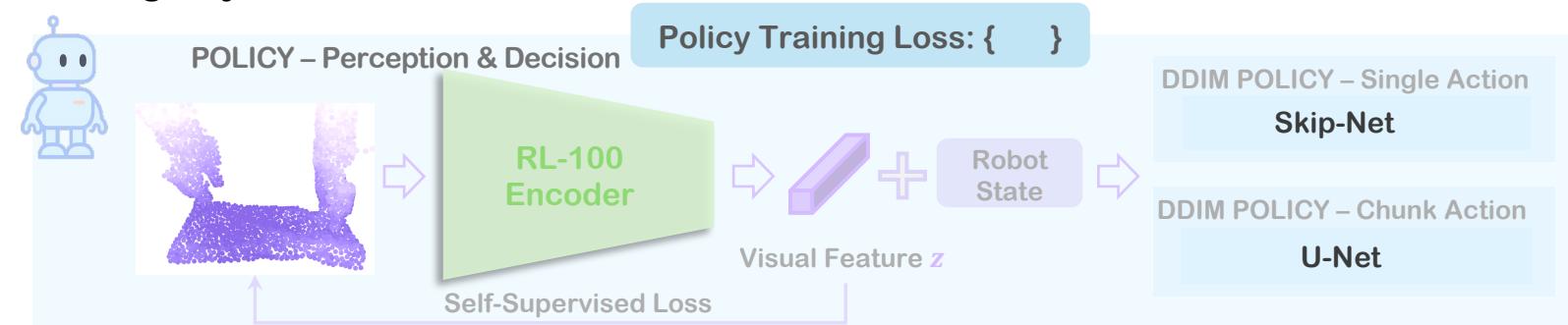
Learn from Human Priors



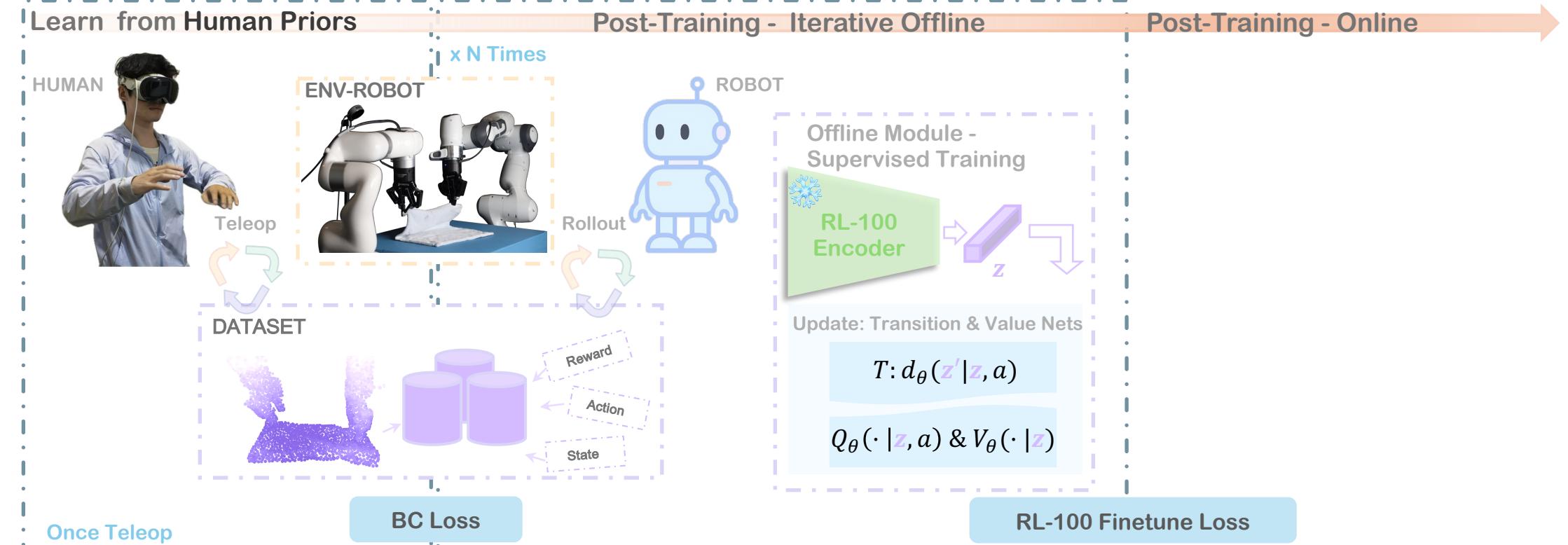
Post-Training – Iterative Offline

Post-Training - Online

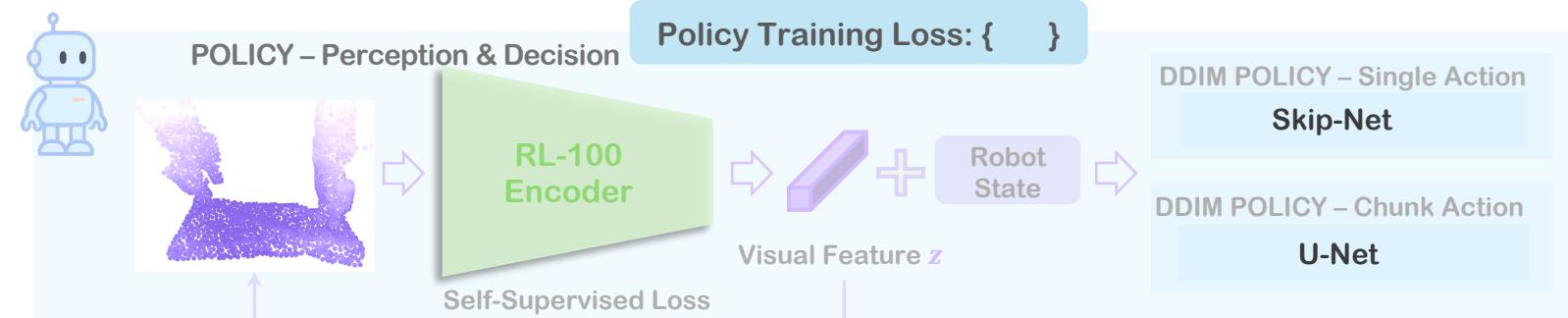
Training Objective



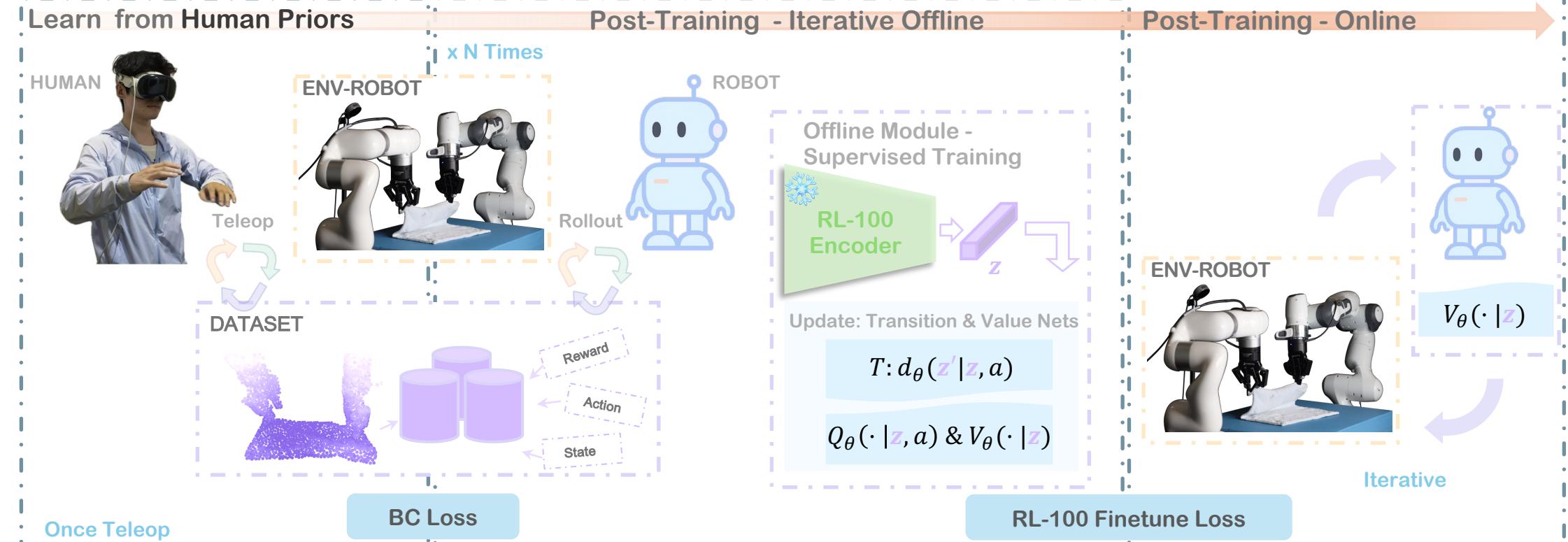
Training Pipeline



Training Objective

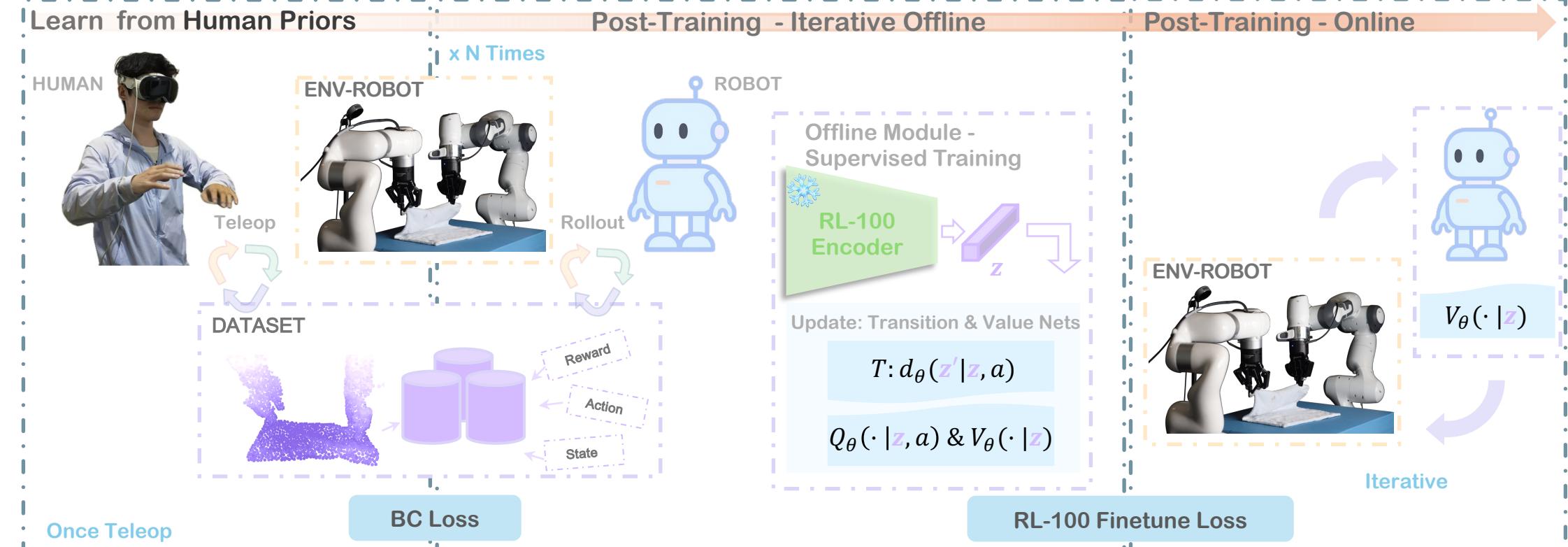


Training Pipeline

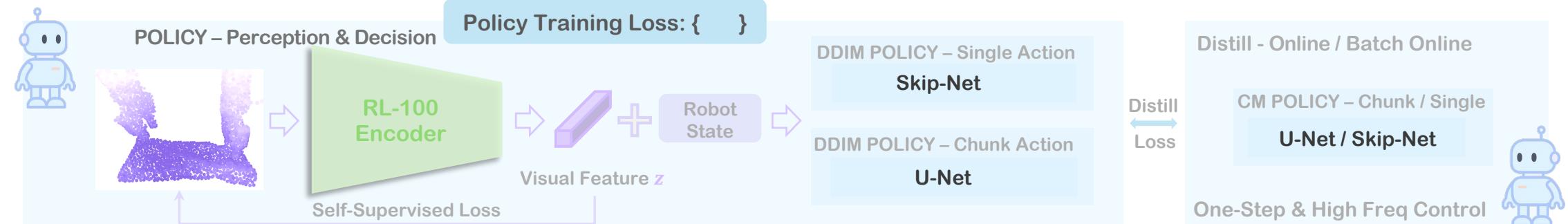


Training Objective

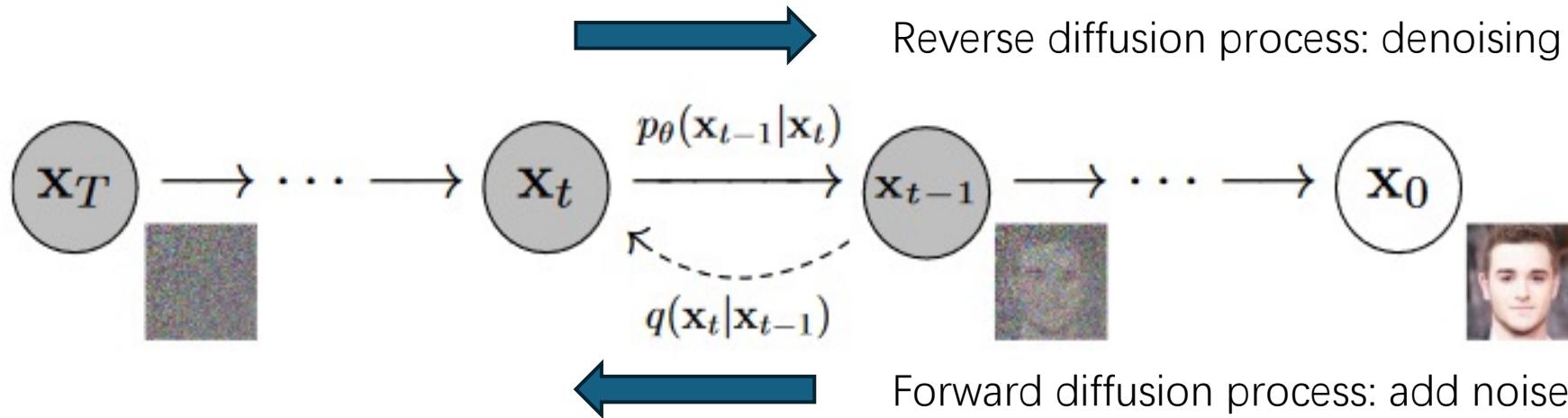
Training Pipeline



Training Objective



□ Two-level MDP with DDIM sampling with stochastic form



Policy gradient (PG) loss: $\nabla_{\theta} J = \mathbb{E}_{\pi}[\nabla_{\theta} \log p_{\theta}(a|s) R_{\pi}]$

PG loss with **multi step sampling (DDIM)**: $\nabla_{\theta} J = \mathbb{E}_{\pi}[\sum_{k=0}^K \nabla_{\theta} \log p_{\theta}(x_{\tau_{k-1}}|x_{\tau_k}, s) R_{\pi}]$

PG loss with multi step sampling and **importance sampling**: $\nabla_{\theta} J = \mathbb{E}_{\pi}[\sum_{k=0}^K \nabla_{\theta} \log \frac{p_{\theta}(x_{\tau_{k-1}}|x_{\tau_k}, s)}{p_{\theta_{old}}(x_{\tau_{k-1}}|x_{\tau_k}, s)} A_{\pi}]$

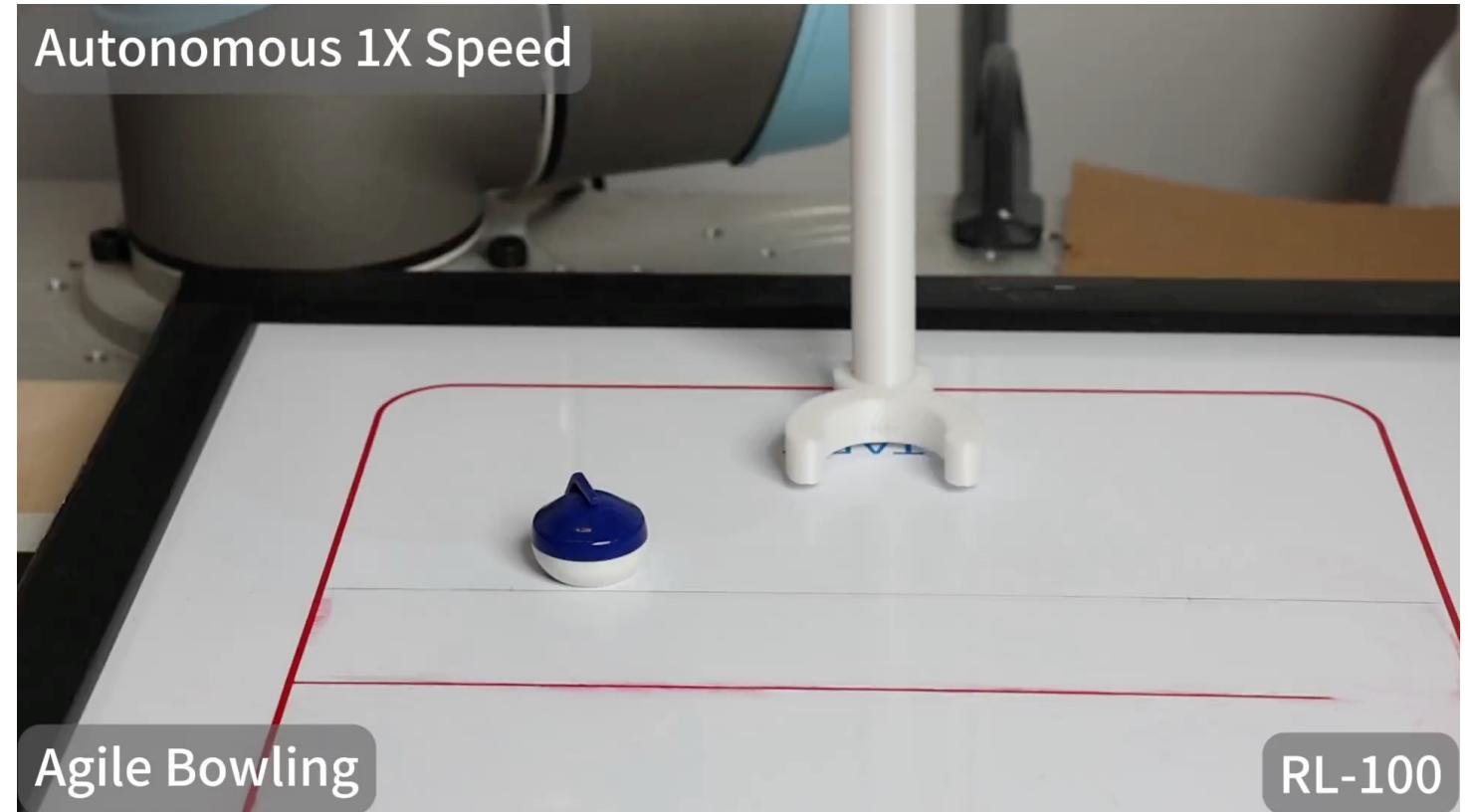
$A_{\pi} = Q - V$
 offline

$A_{\pi} = GAE$
 online

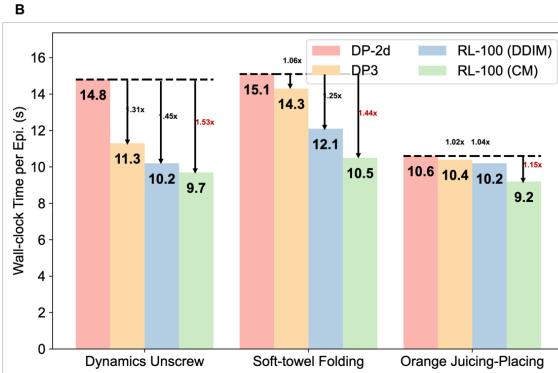
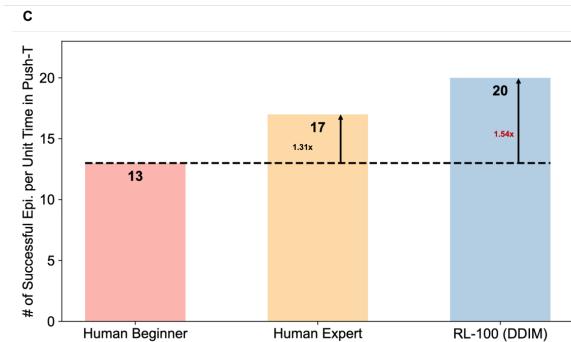
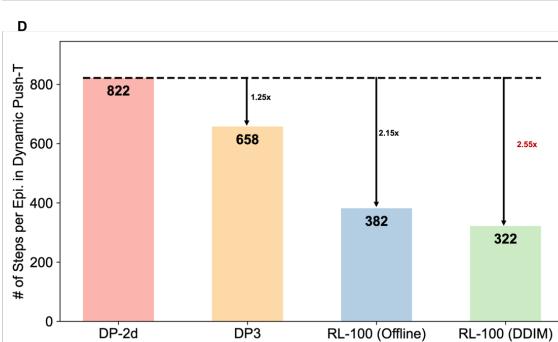
One-step consistency distillation: $\mathcal{L}_{CD}(\theta) = \mathbb{E}_{x_0, \tau, \varepsilon} \left[\|C_{\theta}(x^{\tau}, \tau) - \text{sg}[\Psi_{\varphi}(x^{\tau}, \tau \rightarrow 0)]\|_2^2 \right]$

Overall finetune loss: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{RL}} + \lambda_{\text{CD}} \cdot \mathcal{L}_{\text{CD}}$

- Robustness, Zero-Shot & Few-shot Generalization



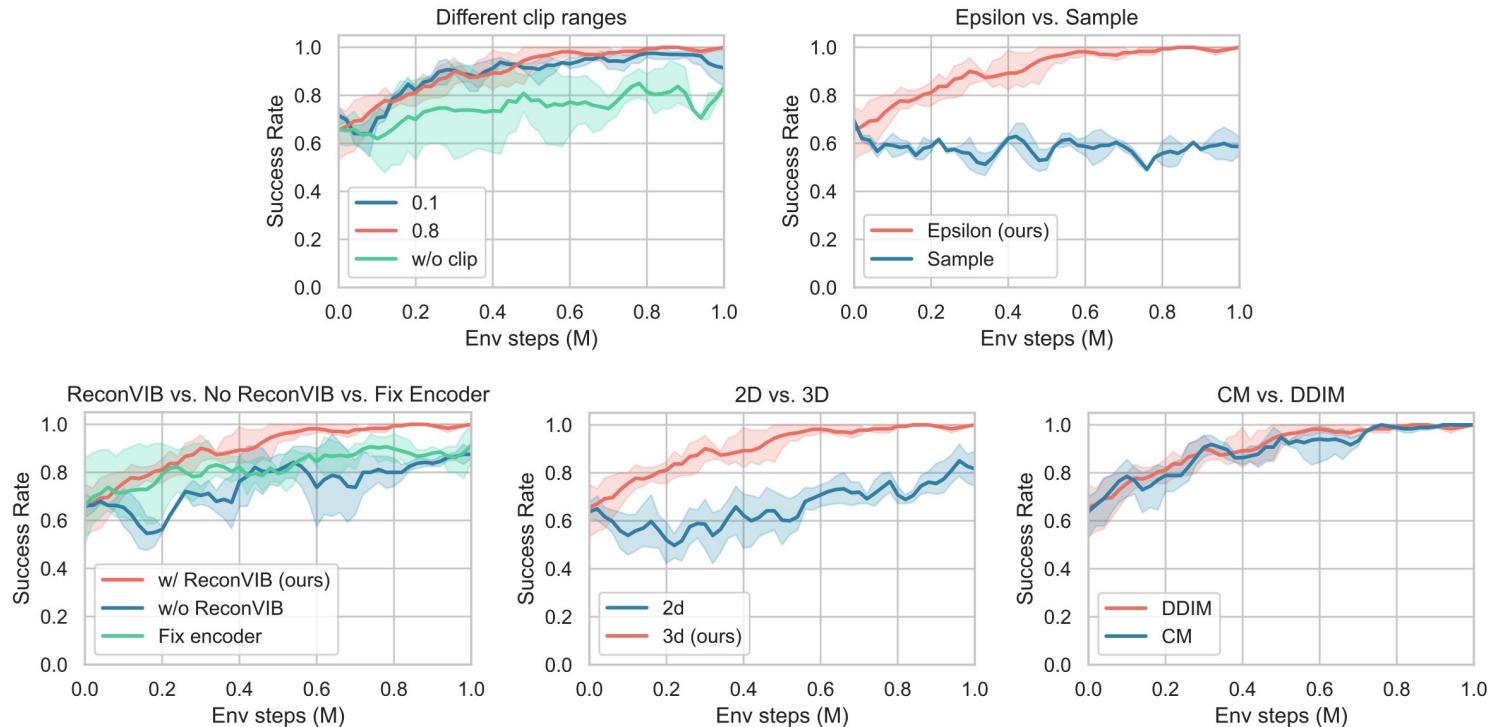
■ Execution efficiency



□ Data usage

Task	Human Demonstration		Iterative Offline RL		Online RL	
	# of epi.	Collection time (h)	# of epi.	Collection time (h)	# of epi.	Collection time (h)
Dynamic Push-T	100	2	821	8	763	7.5
Agile Bowling	100	2	249	2	213	2.5
Pouring	64	1	741	6.8	129	1.5
Soft-towel Folding	400	5	896	11	654	8.5
Dynamic Unscrew	31	0.5	467	4.5	288	3
Orange Juicing – Placing	80	1.5	642	10.5	750	12.5
Orange Juicing – Removal	29	0.5	149	2.5	240	4
Average	115	1.8	566	6.5	434	5.6

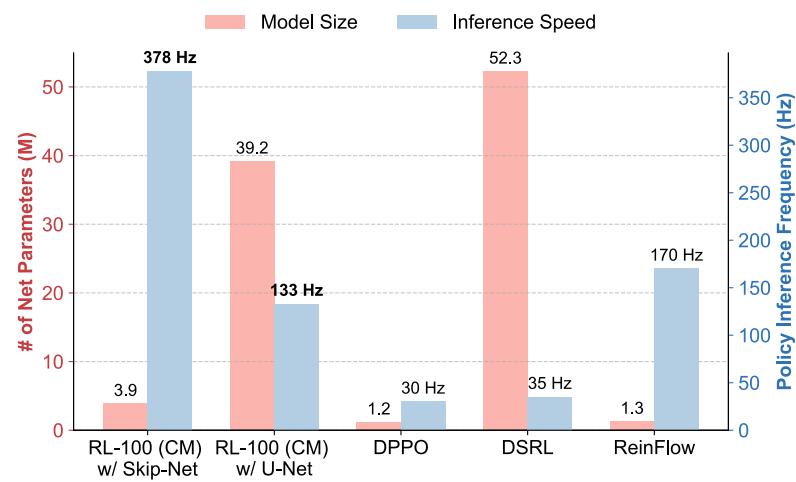
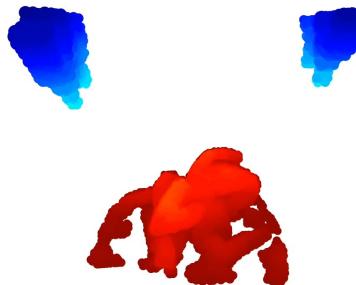
□ Ablation study



Takeaway:

- 1) **Variance clipping is valid for stable exploration** - variance clipping in the stochastic DDIM sampling process.
- 2) **Epsilon prediction is more suitable for RL**: large noise schedule for exploration
- 3) **Reconstruction is crucial for visual robotic manipulation RL** as it mitigates representational drift and improves sample efficiency.
- 4) On a relatively clean scene, the 3D variant learns **faster and attains a higher** final success rate.
- 5) **CM effectively compresses the iterative denoising process** without sacrificing control quality, enabling **high-frequency deployment**.

Ablation study



Folding

□ Next move - Liberate productive forces: robot helps

Single task

Multi task:
The same series
More data-more
robots

Understand
humans' instructions

Thanks!

Project page

Wechat